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Abstract : The oxidation of some indolines into indoles with palladium in the presence of
ammonium formate is studied with the aim to obtain precursors of indoloquinoline alkaloids.

The tetrahydropyrrolo-[4,3,2-de]quinoline 1 structure is found in several alkaloids such as

damirone A and B 2, isolated from sponges!, and haematopodin 3, isolated from fungiZ.
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R = CH3 : damirone A haematopodin
R =H : damirone B Scheme 1
Recently we have described the synthesis of 1,3,4,5-tetrahydropyrrolo-[4,3,2-de]quinoline

13 from 4-nitroindole. Thus, in this Short Communication, we used this strategy to obtain methoxy
synthetic precursors of 2 and 3, and we described our first tries to obtain the oxazine cycle of 3.

4-Nitroindoles 4a-c were synthesized by Bergman procedure4. 4-Nitro-7-methoxyindoles
4d-f were synthesized by nitration of methoxyindoles as we have previously described>. Sa-f were
obtained by condensation of oxalyl chloride and then treatment with methanol or by modified
Vilsmeier reaction3-6, Sa-f were reduced into indolines 6a-f by HSiEt3 (3 equivalents) in
trifluroacetic acid. Lactams 7a-f were obtained by reduction of nitro function (Pd-C 10%-H», 5 bars
or PtOa-Ha, atmospheric pressure or SnCl2-12 N HCI, reflux temperature, 3 hours) and heating at

reflux temperature in toluene (Scheme 2, table 1).
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Table 1 : Synthesis of lactam-indolines 7a-f
4a-f Sa-f 6a-f 7a-f
6 R a(%) b(%) % ¢ (%) d(%) e(%)
a H H 2 65 94 70 92 -
b H Me 63 83 85 75 75 -
¢ H Bn - 43 80 80 = -
d OMe H - 74 73 0 5 S
e OMe Me 96 54 81 14 - 87
f OMe Bn 78 0 86 - - 70

a: (COCl),, Et>0O, then MeOH; b : Po03Cly, methyl pyrrolidinylglyoxylate, room
temperature, 2h, then MeOH ; ¢ : SnCl»-12N HCI. 110°C, 3 h; d : Pd-C, H», 5 bars , then
toluene, 110°C, 12h ; e : PtO», Ha, atm. pressure , then toluene, 110°C, 12h.

The lactams 7a-c were reduced in good yields into amines 9a-¢ by BH3-SMe» in THF (Scheme 3).
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7 e-f was methylated by CH3I to give 10e-f (81% and 90% respectively) which were reduced with

BH3-SMe- into 11e-f (88% and 81%). 11g was formed from 7 e (81%) (Scheme 4).
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The oxidation of indoline structure is a well-documented reaction. In our hands, the classical
reagents (DDQ?, CuCl2-O,8, cinnamic acid8, PIFA?) did not give result. Manganese dioxide!C gave
only oxidation of 7e at room temperature to lead to the keto-amide 12a (42%). This compound was
not reduced into 12b with LiIAIH,. After having successfully used patladium in the presence of
ammonium formate3-!! to oxidize indolines into indoles this reaction was appliedfor the synthesis of:

7e. 9a-b and 11f. Thus. indoles 13a-b were obtained with high yields. whereas 11f led to the
debenzylated indole 13f with moderate yield. 7 e was not oxidized (Table 2).

0
Ry HN 0 HN
N N N
Y R, ocH, CHa OCH, CHs
13a,b,f 12a 12b

Table 2 : Oxidation of indolines into indoles

indolin indole yield
9a 13a : R|=R»=H, Y=H 90%>
9b 13b : Rj=H, Ro=Me, Y=H 98%
11f 13f : Rj=Me, Ro=H,Y=0OMe 67%
Te no reaction

Indoline 14a was obtained from 7f by alkylation with l-iodo-3-(tetrahydropyran-2-
yloxy)propane (I-(CH»)3-OTHP) (98%),  but this compound did not give indole even after long
reaction time, only debenzylation into indoline 15 was observed (97%). The corresponding indole

16a was obtained by oxidation of 15 by the use of Barton reagent (diphenylselenic anhydride)!2

(41%) (Scheme 5).
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14a and 16a were hydrolyzed in acidic medium into alcohol 14b, 16b (98%, 90%). The
treatment of 14b with LiAIH4 did not give cyclization, only reduction of the carbonyl group was

observed to form 18 (32%) (Scheme 6). Under these conditions 16b was not reduced by LiAlH4 and
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Red-AI®-The oxazine 19 was obtained by the use of Red-Al® from 14b (20%). Unfortunately we

have never obtained indole from 19.
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Scheme 6
In conclusion. in this work we obtained the precursors of both damirones and haematopodin
and now we study the oxidation of these compounds to obtain the natural products.
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